Non-constructive proof of existance
在 A Course in Discrete Structures by Rafael Pass and Wei-Lung Dustin Tseng 上看到一个很有意思的证明方法:Non-constructive proof of existance。
Proof by Cases
Proof by Cases 指的是这样一种证明技巧:将定理的定义域拆分成多个小区间,证明每个区间内,定理成立。 例如用这种方法证明:
\[(n+1)^2 \ge 2^n \textit{ for all integers n satisfying } 0 \le n \le 5.\]只需要枚举$0$到$5$的所有$n$,证明其都满足$(n+1)^2 \ge 2^n$。
$n$ | $(n+1)^2$ | $2^n$ | |
---|---|---|---|
0 | 0 | $\le$ | 1 |
1 | 1 | $\le$ | 2 |
2 | 4 | $\le$ | 4 |
3 | 9 | $\le$ | 8 |
4 | 16 | $\le$ | 16 |
5 | 25 | $\le$ | 32 |
由此,可证得结论。
另一个例子,证明:
\[\textit{For all real x, } |x^2| = |x|^2.\]将其定义域分为两部分,$x \ge 0$ 和 $x < 0$.
\[{\begin{cases} \text{If } x \ge 0, & \text{ then } |x^2| = x^2 = |x|^2. \\ \text{If } x < 0, & \text{ then } |x^2| = (-x)^2 = |x|^2. \end{cases}}\]Proof by Example
Proof by Example 只是证明一个谓词逻辑的命题,只需要找出一个例子证明原命题或者原命题的否命题即可。例如,证明 \(\textit{There exists some n such that } (n+1)^2 < 2^n.\) 为了证明这一命题,找出一个样例,例如$n=6$就可以满足条件,命题得证。
Non-constructive proof of existance
对于existance类的证明,找出一个case或者一个example即可。而对于有些命题,并不需要显式地将这个样例构造出来,就可以证明其 存在性。这一证明技巧叫做Non-constructive proof of existance.
例如,证明:
\[\textit{There exists irrational numbers x and y such that } x^y \textit{ is rational.}\]- Proof: we know that $\sqrt{2}$ is irrational, then let $z = \sqrt{2}^{\sqrt{2}}$.
- If $z$ is rational, then we conclude this theorem.
-
If $z$ is irrational, then take $x = z = {\sqrt{2}}^{\sqrt{2}}$, and $y = \sqrt{2}$. Then
\[x^y = ({\sqrt{2}}^{\sqrt{2}})^{\sqrt{2}} = {\sqrt{2}}^{\sqrt{2}\sqrt{2}} = {\sqrt{2}}^2 = 2\]is indeed a rational number.
- $z$ is rational and $z$ is irrational cover the domain of this problem, we proof the existance of the pair of $x$ and $y$ without construct the example asked by the theorem explicitly.