A Course in Discrete Structures by Rafael Pass and Wei-Lung Dustin Tseng 上看到一个很有意思的证明方法:Non-constructive proof of existance。

Proof by Cases

Proof by Cases 指的是这样一种证明技巧:将定理的定义域拆分成多个小区间,证明每个区间内,定理成立。 例如用这种方法证明:

\[(n+1)^2 \ge 2^n \textit{ for all integers n satisfying } 0 \le n \le 5.\]

只需要枚举$0$到$5$的所有$n$,证明其都满足$(n+1)^2 \ge 2^n$。

$n$ $(n+1)^2$   $2^n$
0 0 $\le$ 1
1 1 $\le$ 2
2 4 $\le$ 4
3 9 $\le$ 8
4 16 $\le$ 16
5 25 $\le$ 32

由此,可证得结论。

另一个例子,证明:

\[\textit{For all real x, } |x^2| = |x|^2.\]

将其定义域分为两部分,$x \ge 0$ 和 $x < 0$.

\[{\begin{cases} \text{If } x \ge 0, & \text{ then } |x^2| = x^2 = |x|^2. \\ \text{If } x < 0, & \text{ then } |x^2| = (-x)^2 = |x|^2. \end{cases}}\]

Proof by Example

Proof by Example 只是证明一个谓词逻辑的命题,只需要找出一个例子证明原命题或者原命题的否命题即可。例如,证明 \(\textit{There exists some n such that } (n+1)^2 < 2^n.\) 为了证明这一命题,找出一个样例,例如$n=6$就可以满足条件,命题得证。

Non-constructive proof of existance

对于existance类的证明,找出一个case或者一个example即可。而对于有些命题,并不需要显式地将这个样例构造出来,就可以证明其 存在性。这一证明技巧叫做Non-constructive proof of existance.

例如,证明:

\[\textit{There exists irrational numbers x and y such that } x^y \textit{ is rational.}\]
  • Proof: we know that $\sqrt{2}$ is irrational, then let $z = \sqrt{2}^{\sqrt{2}}$.
    • If $z$ is rational, then we conclude this theorem.
    • If $z$ is irrational, then take $x = z = {\sqrt{2}}^{\sqrt{2}}$, and $y = \sqrt{2}$. Then

      \[x^y = ({\sqrt{2}}^{\sqrt{2}})^{\sqrt{2}} = {\sqrt{2}}^{\sqrt{2}\sqrt{2}} = {\sqrt{2}}^2 = 2\]

      is indeed a rational number.

  • $z$ is rational and $z$ is irrational cover the domain of this problem, we proof the existance of the pair of $x$ and $y$ without construct the example asked by the theorem explicitly.