子模性(Submodular)
$A$ 是 $B$ 的子集,则对于函数 $f()$,如果:
\[f(A+e)-f(A)>=f(B+e)-f(B)\]成立,则说 $f()$ 函数是子模的。
子模性描述的是一种增益递减的现象。例如:
\[\begin{aligned} u &= {1,2,3,4,5,6,7,8} \\ A &= {1,2,3} \\ B &= {1,2,3,5,6} \end{aligned}\]$f(A)=|A|$ 表示集合 $A$ 的个数,那么:
\[f(A+e)-f(A)>=f(B+e)-f(B)\]例如 $e={3,4,5}$。
离散优化问题(Discrete Optimization Problems)
submodularity is ubiquitous(到处存在的) for discrete(离散) problems as is convexity(凸) for continuous(连续) problems.
例子(Motivation & Application)
- 集合覆盖与最大覆盖(set cover and maximum coverage)
NP-hard -> fast greedy approximation algorithm.
- 边覆盖(edge cover),顶点覆盖(vertex cover)
最少的点覆盖所有边,最少的边覆盖所有点。
- 传感器放置(sensor placement)
最少传感器覆盖全部区域
k个传感器(k-子集)能够覆盖的最大区域
有约束条件下的传感器放置问题(例如墙壁的限制), sensor placement in buildings. 三种选择(规划): 使用较便宜但范围较小的额传感器,使用较贵但范围较大的 传感器,将这两种传感器混合使用。
- Graph Cut Problems
Minimum CUT: 找出一个点的子集S,使得 S 和 V-S 之间的边最少。 Maximum CUT: 找出一个点的子集S,使得 S 和 V-S 之间的边最多。
如果边/点有权重,如何考虑?
- Facility/Plant Location (uncapacitated, 不限量的)
联想:线性规划、网络流问题,满足不同的要求。
- Information Gain and Feature Seletion,信息获取和特征提取
选取尽量少的特征使得对未知量的预测(prediction)依然准确。
f(A) = I(Y;XA) = H(Y) − H(Y|XA) = H(XA) − H(XA|Y)
选取特征向量的一个k-子集使得对未知量的预测尽可能准确。
- Monge Matrices
$m \times n$ matrices $C = c_{ij}$ are called Monge matrices if they satisfy the Monge property, namely(也就是说):
\[c_{ij}+ c_{rs} < c_{is} + c_{rj}\]for all $1 \le i < r \le m$ and $ 1 \le j < s \le n$.
四边形不等式(quadrangle inqeuality),加速DP(dynamic programming problems)。
从一个凸包(凸多边形)中删边来构造 Monge Matrix。
- A model of Influence in Social Networks
Given a graph $G = (V,E)$, each $v \in V¥ corresponds to a person, to each $v$ we have an activation function \(f(v): 2V \to [0,1]\) dependent only on its neighbors.
找到社交网络中一个最小的子集,使得其能影响尽量多的人。
- The value of a friend
基于一个子模函数来计算朋友在一个社交网络中的价值
- Information Cascades 信息瀑布
找到最具影响力的信息源。
- Diversity(多样性) Functions
Given a set $V$ of of items, how do we choose a subset $S \subseteq V$ that is as diverse as possible, with perhaps constraints on $S$ such as its size.
How do we choose the smallest set S that maintains a given quality of diversity?
Goal of diversity: ensure proper representation in chosen set that, say otherwise in a random sample, would lead to poor representation of normally underrepresented groups.
差异意味着不同的观点(异常子网)。
Submodular Motivation Recap
Given a set of objects $V = { v_1,\dots,v_n }$ and a function $f : 2V \to R$ that returns a real value for any subset $S \subseteq V $.
Suppose we are interested in finding the subset that either maximizes or minimizes the function, e.g., $argmax_{S \subseteq V}f(S)$, possibly subject to some constraints.
In general, this problem has exponential time complexity.
Example: f might correspond to the value (e.g., information gain) of a set of sensor locations in an environment, and we wish to find the best set S ⊆ V of sensors locations given a fixed upper limit on the number of sensors $|S|$.
In many cases (such as above) f has properties that make its optimization tractable to either exactly or approximately compute.
One such property is submodularity.
基础定义
- $f(A) + f(B) \ge f(A \bigcup B) + f(A \bigcap B)$
-
$f(A \bigcup {v}) − f(A) \ge f(B \bigcup {v}) − f(B)$
This means that the incremental “value”, “gain”, or “cost” of $v$ decreases (diminishes) as the context in which $v$ is considered grows from $A$ to $B$.
- $f(A) + f(B) \ge f(A\bigcup B)$ This means that the “whole” is less than the sum of the parts.