$A$ 是 $B$ 的子集,则对于函数 $f()$,如果:

\[f(A+e)-f(A)>=f(B+e)-f(B)\]

成立,则说 $f()$ 函数是子模的。

子模性描述的是一种增益递减的现象。例如:

\[\begin{aligned} u &= {1,2,3,4,5,6,7,8} \\ A &= {1,2,3} \\ B &= {1,2,3,5,6} \end{aligned}\]

$f(A)=|A|$ 表示集合 $A$ 的个数,那么:

\[f(A+e)-f(A)>=f(B+e)-f(B)\]

例如 $e={3,4,5}$。

离散优化问题(Discrete Optimization Problems)

submodularity is ubiquitous(到处存在的) for discrete(离散) problems as is convexity(凸) for continuous(连续) problems.

例子(Motivation & Application)

  1. 集合覆盖与最大覆盖(set cover and maximum coverage)

NP-hard -> fast greedy approximation algorithm.

  1. 边覆盖(edge cover),顶点覆盖(vertex cover)

最少的点覆盖所有边,最少的边覆盖所有点。

  1. 传感器放置(sensor placement)

最少传感器覆盖全部区域

k个传感器(k-子集)能够覆盖的最大区域

有约束条件下的传感器放置问题(例如墙壁的限制), sensor placement in buildings. 三种选择(规划): 使用较便宜但范围较小的额传感器,使用较贵但范围较大的 传感器,将这两种传感器混合使用。

  1. Graph Cut Problems

Minimum CUT: 找出一个点的子集S,使得 S 和 V-S 之间的边最少。 Maximum CUT: 找出一个点的子集S,使得 S 和 V-S 之间的边最多。

如果边/点有权重,如何考虑?

  1. Facility/Plant Location (uncapacitated, 不限量的)

联想:线性规划、网络流问题,满足不同的要求。

  1. Information Gain and Feature Seletion,信息获取和特征提取

选取尽量少的特征使得对未知量的预测(prediction)依然准确。

f(A) = I(Y;XA) = H(Y) − H(Y|XA) = H(XA) − H(XA|Y)

选取特征向量的一个k-子集使得对未知量的预测尽可能准确。

  1. Monge Matrices

$m \times n$ matrices $C = c_{ij}$ are called Monge matrices if they satisfy the Monge property, namely(也就是说):

\[c_{ij}+ c_{rs} < c_{is} + c_{rj}\]

for all $1 \le i < r \le m$ and $ 1 \le j < s \le n$.

四边形不等式(quadrangle inqeuality),加速DP(dynamic programming problems)。

从一个凸包(凸多边形)中删边来构造 Monge Matrix。

  1. A model of Influence in Social Networks

Given a graph $G = (V,E)$, each $v \in V¥ corresponds to a person, to each $v$ we have an activation function \(f(v): 2V \to [0,1]\) dependent only on its neighbors.

找到社交网络中一个最小的子集,使得其能影响尽量多的人。

  1. The value of a friend

基于一个子模函数来计算朋友在一个社交网络中的价值

  1. Information Cascades 信息瀑布

找到最具影响力的信息源。

  1. Diversity(多样性) Functions

Given a set $V$ of of items, how do we choose a subset $S \subseteq V$ that is as diverse as possible, with perhaps constraints on $S$ such as its size.

How do we choose the smallest set S that maintains a given quality of diversity?

Goal of diversity: ensure proper representation in chosen set that, say otherwise in a random sample, would lead to poor representation of normally underrepresented groups.

差异意味着不同的观点(异常子网)。

Submodular Motivation Recap

Given a set of objects $V = { v_1,\dots,v_n }$ and a function $f : 2V \to R$ that returns a real value for any subset $S \subseteq V $.

Suppose we are interested in finding the subset that either maximizes or minimizes the function, e.g., $argmax_{S \subseteq V}f(S)$, possibly subject to some constraints.

In general, this problem has exponential time complexity.

Example: f might correspond to the value (e.g., information gain) of a set of sensor locations in an environment, and we wish to find the best set S ⊆ V of sensors locations given a fixed upper limit on the number of sensors $|S|$.

In many cases (such as above) f has properties that make its optimization tractable to either exactly or approximately compute.

One such property is submodularity.

基础定义

  1. $f(A) + f(B) \ge f(A \bigcup B) + f(A \bigcap B)$
  2. $f(A \bigcup {v}) − f(A) \ge f(B \bigcup {v}) − f(B)$

    This means that the incremental “value”, “gain”, or “cost” of $v$ decreases (diminishes) as the context in which $v$ is considered grows from $A$ to $B$.

  3. $f(A) + f(B) \ge f(A\bigcup B)$ This means that the “whole” is less than the sum of the parts.