Java 8 Lambda 代码片段
Java 8引入了lambda表达式,可以用来完成很多函数式编程的目的。本文的内容主要用来积累一些有用的Lambda表达式的应用代码片段。
可以使用下面语法实现Lambda表达式:
(params) -> expression
(params) -> statement
(params) -> { statements }
如果方法并不改变任何方法参数,比如只是输出,那么可以简写如下:
() -> System.out.println("Hello Lambda Expressions");
如果方法接受两个方法参数,如下:
(int even, int odd) -> even + odd
Functional Interface
Functional Interface指的是只有一个抽象方法的接口。在Java 8中,使用@FunctionalInterface注解来标记(注解是可选的)。可以使用lambda表达式来实例化接口的子类。
实现Runnable线程,使用() -> {}替代匿名类:
@FunctionalInterface
interface M {
public abstract void A();
}
// ...
M m = ()->System.out.println("a");
@FunctionalInterface
interface N {
public abstract void A(String arg);
}
// ...
N n = ("lambda expression")->{
System.out.println("class N");
System.out.println(arg);
};
一个更加实用的例子:使用Lambda表达式来创建匿名Runnable线程对象:
//Before Java 8:
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("Before Java8");
}
}).start();
//Java 8 way:
new Thread(() -> System.out.println("In Java8!")).start();
仿照Runnable的例子,也可以使用lambda表达式来实现事件处理。使用lambda表达式如下所示写出更好的事件侦听器的代码。
// Before Java 8:
JButton show = new JButton("Show");
show.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
System.out.println("without lambda expression is boring");
}
});
// Java 8 way:
show.addActionListener((e) -> {
System.out.println("Action !! Lambda expressions Rocks");
});
使用lambda表达式实现排序:
// Old style.
List<String> l = new LinkedList<>();
// ...
l.sort(new Comparator<String>() {
@Override
public int compare(String s1, String s2) {
//...
return s1.compareTo(s2);
}
})
// Lambda style.
l.sort((String s1, String s2)->s1.compareTo(s2));
更复杂的情形中,也许需要进行多个属性的比较,此时,我们可以考虑使用thenComparing
方法:
class A {
int a, b;
A(int a, int b) {
this.a = a; this.b = b;
}
}
List<A> aList = Arrays.asList(new A(1, 2), new A(3, 4), new A(1, 5));
aList.sort(new Comparator<A>() {
@Override
public int compare(A o1, A o2) {
// TODO Auto-generated method stub
return 0;
}
}.thenComparing((o1, o2) -> o1.a - o2.a)
.thenComparing((o1, o2) -> o1.b - o2.b));
// 或者写成:
class Utils {
static <E> Comparator<E> compare() {
return (e1, e2) -> 0;
}
}
aList.sort(Utils.<A> compare().thenComparing((o1, o2) -> o1.a - o2.a)
.thenComparing((o1, o2) -> o1.b - o2.b));
在java 8中你可以使用Lambda表达式替代丑陋的匿名类。
需要注意的是,在Lambda表达式中使用的外部变量在效果上必须是final
的。
Local variable a defined in an enclosing scope must be final or effectively final.
也就是说,这些变量是不可以被改变的,尽管在声明变量时不是必须使用final
关键字。
接口的默认方法
Java 8中,接口可以有默认方法。如下:
interface A {
default void funcA() {
/...
}
void funcB();
}
在实现接口时,只需要实现接口的非默认方法即可。但是,使用lambda表达式去实现一个FunctionalInterface
的时候,不能调用接口的默认方法,否则会有编译错误。
遍历集合
使用Lambda表达式遍历List集合
//Prior Java 8 :
List features = Arrays.asList("Lambdas", "Default Method", "Stream API",
"Date and Time API");
for(String feature : features) {
System.out.println(feature);
}
//In Java 8:
List features = Arrays.asList("Lambdas", "Default Method", "Stream API",
"Date and Time API");
features.forEach(n -> System.out.println(n));
// Even better use Method reference feature of Java 8
// method reference is denoted by :: (double colon) operator
// looks similar to score resolution operator of C++
features.forEach(System.out::println);
方法引用是使用两个冒号::
这个操作符号。
Lambda表达式和函数接口
为了支持函数编程,Java 8加入了一个新的包java.util.function
,其中有一个接口java.util.function.Predicate
是支持Lambda函数编程:
public static void main(args[]){
List languages = Arrays.asList("Java", "Scala", "C++", "Haskell", "Lisp");
System.out.println("Languages which starts with J :");
filter(languages, (str)->str.startsWith("J"));
System.out.println("Languages which ends with a ");
filter(languages, (str)->str.endsWith("a"));
System.out.println("Print all languages :");
filter(languages, (str)->true);
System.out.println("Print no language : ");
filter(languages, (str)->false);
System.out.println("Print language whose length greater than 4:");
filter(languages, (str)->str.length() > 4);
}
public static void filter(List names, Predicate condition) {
for(String name: names) {
if(condition.test(name)) {
System.out.println(name + " ");
}
}
}
程序运行后的输出结果为:
Languages which starts with J :
Java
Languages which ends with a
Java
Scala
Print all languages :
Java
Scala
C++
Haskell
Lisp
Print no language :
Print language whose length greater than 4:
Scala
Haskell
//Even better
public static void filter(List names, Predicate condition) {
names.stream()
.filter((name) -> (condition.test(name)))
.forEach((name) -> {System.out.println(name + " ");
});
}
从这个例子中可以看出,来自Stream API 的filter方法能够接受 Predicate参数, 能够允许测试多个条件。
复杂的结合Predicate使用
java.util.function.Predicate
提供and()
, or()
和xor()
可以进行逻辑操作,比如为了得到一串字符串中以”J”开头的4个长度:
// We can even combine Predicate using and(), or() And xor() logical functions
// for example to find names, which starts with J and four letters long, you
// can pass combination of two Predicate
Predicate<String> startsWithJ = (n) -> n.startsWith("J");
Predicate<String> fourLetterLong = (n) -> n.length() == 4;
names.stream().filter(startsWithJ.and(fourLetterLong))
.forEach((n) -> System.out.print("\nName, which starts with 'J'
and four letter long is : " + n));
其中startsWithJ.and(fourLetterLong)
是使用了AND逻辑操作。
Lambda实现Map和Reduce
最流行的函数编程概念是map,它允许你改变你的对象,在这个案例中,我们将costBeforeTeax
集合中每个元素改变了增加一定的数值,我们将Lambda表达式 x -> x*x
传送map()
方法,这将应用到stream中所有元素。然后我们使用 forEach()
打印出这个集合的元素.
// applying 12% VAT on each purchase
// Without lambda expressions:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
for (Integer cost : costBeforeTax) {
double price = cost + .12*cost;
System.out.println(price);
}
// With Lambda expression:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
costBeforeTax.stream().map((cost) -> cost + .12*cost)
.forEach(System.out::println);
程序的输出为:
112.0
224.0
336.0
448.0
560.0
reduce()
是将集合中所有值结合进一个,Reduce类似SQL语句中的sum()
, avg()
或count()
, 如下面的例子:
// Applying 12% VAT on each purchase
// Old way:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
double total = 0;
for (Integer cost : costBeforeTax) {
double price = cost + .12*cost;
total = total + price;
}
System.out.println("Total : " + total);
// New way:
List costBeforeTax = Arrays.asList(100, 200, 300, 400, 500);
double bill = costBeforeTax.stream().map((cost) -> cost + .12*cost)
.reduce((sum, cost) -> sum + cost)
.get();
System.out.println("Total : " + bill);
程序运行的输出为:
Total : 1680.0
filter和filtering
Filtering是对大型Collection操作的一个通用操作,Stream提供filter()
方法,接受一个Predicate对象,意味着你能传送lambda表达式作为一个过滤逻辑进入这个方法。例如,通过filtering 创建一个字符串String
的集合:
// Create a List with String more than 2 characters
List<String> strList = Arrays.asList("abc", "", "bcd", "", "defg", "jk");
List<String> filtered = strList.stream().filter(x -> x.length()> 2)
.collect(Collectors.toList());
System.out.printf("Original List : %s, filtered list : %s %n",
strList, filtered);
程序运行后的输出为:
Original List : [abc, , bcd, , defg, jk], filtered list : [abc, bcd, defg]
map与List的结合使用
- 对集合中每个元素应用函数。我们经常需要对集合中元素运用一定的功能,如表中的每个元素乘以或除以一个值等等.
// Convert String to Uppercase and join them using coma
List<String> G7 = Arrays.asList("USA", "Japan", "France", "Germany",
"Italy", "U.K.","Canada");
String G7Countries = G7.stream().map(x -> x.toUpperCase())
.collect(Collectors.joining(", "));
System.out.println(G7Countries);
Output :
USA, JAPAN, FRANCE, GERMANY, ITALY, U.K., CANADA
上面是将字符串转换为大写,然后使用逗号串起来。
- 通过复制不同的值创建一个子列表。使用Stream的distinct()方法过滤集合中重复元素。
// Create List of square of all distinct numbers
List<Integer> numbers = Arrays.asList(9, 10, 3, 4, 7, 3, 4);
List<Integer> distinct = numbers.stream().map(i -> i*i).distinct()
.collect(Collectors.toList());
System.out.printf("Original List : %s,\nSquare Without duplicates: %s %n",
numbers, distinct);
程序的输出为:
Original List : [9, 10, 3, 4, 7, 3, 4],
Square Without duplicates : [81, 100, 9, 16, 49]
- 计算List中的元素的最大值,最小值,总和及平均值
//Get count, min, max, sum, and average for numbers
List<Integer> primes = Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
IntSummaryStatistics stats = primes.stream().mapToInt((x) -> x)
.summaryStatistics();
System.out.println("Highest prime number in List : " + stats.getMax());
System.out.println("Lowest prime number in List : " + stats.getMin());
System.out.println("Sum of all prime numbers : " + stats.getSum());
System.out.println("Average of all prime numbers : " + stats.getAverage());
程序运行后的输出为:
Highest prime number in List : 29
Lowest prime number in List : 2
Sum of all prime numbers : 129
Average of all prime numbers : 12.9